Gas-Exchange Chamber (3010-GWK1) Manual

2nd edition

File:Gas-Exchange Chamber3010_GWK2a.doc

©Heinz Walz GmbH, 2010

Heinz Walz GmbH • Eichenring 6 • 91090 Effeltrich • Germany Phone +49-(0)9133/7765-0 • Telefax +49-(0)9133/5395 E-mail info@walz.com • Internet www.walz.com

Contents

1	Sa	fety Instructions1
2	Int	roduction2
3	Op	peration5
-	3.1	Setting up the System
2	3.2	Starting the Software
2	3.3	New Parameters for the Gas-Exchange Chamber 3010-GWK16
3	3.4	Starting Gas Exchange Measurement 12
	3.4	1 Checks before Gas Exchange Measurement 12
	3.4	2 Setting-Up and Starting the Gas Exchange Measurement \dots 12
4	Ca	lculations15
2	4.1	Parameters for Calculations15
2	1.2	Calculation of CO_2 Mole Fraction in the Chamber – ca 16
2	4.3	Modulation of CO ₂ Mole Fraction in the Empty Chamber – CO2buf
2	1.4	Calculation of the Differential CO ₂ Mole Fraction in Measure Mode MP – dCO2MP17
2	4.5	Calculation of H ₂ O Mole Fraction in the Chamber – wa 17
2	1.6	Calculation of H2Obuf
2	1.7	Calculation of the Differential H2O ₂ Mole Fraction in Measure Mode MP – dH2OMP
2	4.8	Calculation of Transpiration Rate – E,
Z	4.9	Relative Humidity (rh %) 19
2	4.10	Calculation of Vapour Pressure Deficit - VPD 19
2	4.11	Calculation of Water Vapor Conductance - GH2O21
Z	4.12	Calculation of Assimilation Rate - A21
Z	4.13	Calculation of Intercellular CO ₂ Mole Fraction
5	Da	ta Handling24

5.1	Reading Data into Excel 2003 and higher	24
5.2	Recalculation of Data	25
6 M	aintenance and Adjustment	26
6.1	Adjusting CO2 Delay	26
6.2	Adjusting Empty Chamber Volume	27
6.3	Function Test of Tleaf	
6.4	Exchanging the Thermocouple for Tleaf	29
6.5	Adjusting Tleaf-Offset	29
6.6	Keep Electronics Dry	
7 Te	echnical Data	31
7.1	Gas-Exchange Chamber 3010-GWK1	31
7.2	AC Power Supply 3020-N	32
7.3	Interface 3010-I/GWK (optional)	32
8 W	arranty	

1 Safety Instructions

- 1. Read the safety instructions and the operating instructions first.
- 2. Pay attention to all the safety warnings.
- 3. Keep the device away from water or high moisture areas.
- 4. Keep the device away from dust, sand and dirt.
- 5. Always ensure there is sufficient ventilation.
- 6. Do not put the device anywhere near sources of heat.
- 7. Connect the device only to the power source indicated in the operating instructions or on the device.
- 8. Clean the device only according to the manufacturer's recommendations.
- 9. Ensure that no liquids or other foreign bodies can find their way inside the device.
- 10. The device should only be repaired by qualified personnel.
- 11. The Gas-Exchange Chamber (3010-GWK1) is a highly sensitive research instrument, which should be used only for research purposes, as specified in this manual. Please follow the instructions of this manual in order to avoid potential harm to the user and damage to the instrument

2 Introduction

The Gas-Exchange Chamber 3010-GWK1 is designed to enable gas exchange measurements of plant material in a climate controlled environment. Fig. 1 shows the base of the Gas-Exchange Chamber 3010-GWK1. Fig. 2 shows the view from underneath.

Fig. 1 Gas Exchange Chamber GWK1; Base, top-view

- 1. Electronics box
- 2. Inside fan
- 3. Motor for inside fan
- 4. Air inlet
- 5. Air outlet
- 6. Tcuv: Pt100 measuring cuvette temperature
- 7. Tleaf: thermocouple measuring leaf temperature
- 8. RH: relative humidity sensor (underneath cover)
- 9. PARamb: Micro Quantum Sensor (MQS/B) measuring cosine corrected ambient photosynthetically active radiation (PAR)
- 10.PARtop: measuring internal PAR

Fig. 2 Gas Exchange Chamber GWK1; View from underneath

- 1. Electronics box
- 2. Motor for inside fan
- 3. Fan for heat exchange of Peltier elements
- 4. Tamb: Pt-100 sensor for ambient temperature
- 5. use these bars, when carrying the Gas-Exchange Chamber 3010-GWK1

The connectors of the Gas Exchange Chamber 3010-GWK1 are shown in Fig. 3.

Fig. 3 Connectors

- 1. Trigger button for data storage
- 2. Status-LED (green blinking: ok)
- 3. Connector COMP, to which additional components developed by Walz can be connected. If the Gas Exchange Chamber 3010-GWK1 is operated without GFS-3000, an optional USB-interface to a computer can be connected here.
- 4. Connector for PARamb-sensor
- 5. Connector for light source (not available)
- 6. Connector for GFS-3000
- 7. Connector for power supply

3 Operation

3.1 Setting up the System

To set up the GFS-Win software, see manual of the GFS-3000.

3.2 Starting the Software

In GFS-Win switch the Measure Mode on (System/ Measure Mode on) to establish the USB-connection and switch the system on. When

Fig. 4 Choosing the Gas-Exchange Chamber 3010-GWK1 in GFS-Win and on the Panel-PC

operating the system with the panel-PC, use the same command: *System/Measure Mode on*. If the chamber is directly connected to a computer with the optional interface 3010-I/GWK (no GFS-3000 used), start the measurement in GFS-Win with *System/Measuring Head only ON*.

A window will appear where the measuring head can be enabled. Choose the Gas-Exchange Chamber 3010-GWK1 and press OK (see Fig. 4).

3.3 New Parameters for the Gas-Exchange Chamber 3010-GWK1

When the Gas-Exchange Chamber 3010-GWK1 is connected there appear several parameters, which do not appear with the Standard Measuring Head 3010-S.

Fig. 5 GFW-Win showing the parameters, which are stored in the Electronic Box of the Gas-Exchange Chamber 3010-GWK1 and can be changed by the user The first parameter is the volume of the empty gas exchange chamber annotated Empty Chamber Volume (Fig. 5). This parameter is

Stored in Measuring Head			
Light Calibration factors			
PAR upper	100.990		
PAR amb Lightsource Eactor	503.970 1.000		
Lightsource ractor	1.000		
Temp. sensor factors	1 00101		
Tamb	1.00197		
T min	0.99803		
ui lear	1.00105		
Temp. sensor offsets	.22		
Tamb	-23		
T min dT leaf	-31		
	24		
Relative Humidity Sensor	963		
75% value	2992		
Emptu Chamber Volume (ml)	1024		
Time-Lag at Std Flow (s)	8.33		
Uperating mode (Config)	19		-
Refresh	Cancel	1	
Refresh	Cancel]	
Refresh	Cancel]	
Refresh	Cancel	SC 811	
Refresh System cons dH20_Cal: 5000 dc H20_Duen: 3513	Cancel		
Refresh System cons dH20_Cal: 5000 dc H20_Quer: 3513 Time-Lag at Std.Fl	Cancel	SC 810 Tçuv 27.68 Tlgaf	
Refresh System cons dH20_Cal: 5000 dc H20_Quer: 3513 Time-Lag at Std.F1 Tcuv o : -22 Tcu	Cancel tants 36 to2_Cal: 5010 ow: 8.33s v g	SC 810 Tçuv 27.68 Tleaf 27.48	
Refresh System cons dH20_Cal: 5000 dc H20_Quer: 3513 Time-Lag at Std.Fl Tcuv_o : -22 Tcu Tamb_o : -23 Tam	Cancel tants 3 o2_Cal: 5010 ow: 8.33s v_g : 1.00101 b_g : 1.00197	SC 81) Tççv 27.68 Tlçaf 27.48 Thçin	
RefreshSystem consdH20_Cal: 5000 dcH20_Quer: 3513Time-Lag at Std.FlTcuv_o: -22 TcuTamb_o: -23 TamTmin_o: -31 Tmi	Cancel tants 36 to2_Cal: 5010 ow: 8.33s v_g : 1.00101 b_g : 1.00197 n_g : 0.99803	SC 810 Tççv 27.68 Tlçªf 27.48 Tġin 27.69	
RefreshSystem consdH20_Cal: 5000 dcH20_Quer: 3513Time-Lag at Std.FlTcuv_o: -22 TcuTamb_o: -23 TamTmin_o: -31 TmiTleaf_o: 24 Tle	Cancel tants 36 to2_Cal: 5010 ow: 8.33s v_g : 1.00101 b_g : 1.00197 n_g : 0.99803 af_g: 1.00109	50 81) 1 Tçço 27.68 Tlçcaf 27.48 Trin 27.69 Cap	
Refresh System cons dH20_Cal: 5000 dc H20_Quer: 3513 Time-Lag at Std.Fl Tcuv_o: -22 Tamb_o: -23 Tmin_o: -31 Tileaf_o: 24 PARamb_g: 503.970	Cancel tants 5010 ow: 8.33s v_g : 1.00101 b_g : 1.00197 n_g : 0.99803 aaf_g: 1.00109	50 810 7540 7540 27.68 7154 27.48 750 27.69 550 27.69 550 488.1	
Refresh System cons dH20_Cal: 5000 dc H20_Quer: 3513 Time-Lag at Std.F1 Tcuv_o: -22 Tamb_o: -23 Tamin_o: -31 Tileaf_o: 24 PARamb_g: 503.970 PARtop_g: 100.990	Cancel	50 810 75 200 T 5200 27.68 T 1 5 4f 27.48 T 1 5 4f 27.69 7 5 10 27.69 488.1 848.1	
Refresh System cons dH20_Ca1: 5000 dc H20_Quer: 3513 Time-Lag at Std.F1 Tcuv_o: -22 Tcu Tamb_o: -23 Tam Thin_o: -31 Tmi Tleaf_o: 24 Tle PARtop_g: 503.970 PARtop_g: 100.990 RH 25% : 963 RH Lieber f: 4 cocces	Cancel tants E o2_Cal: 5010 ow: 8.33s v_g : 1.00101 b_g : 1.00197 n_g : 0.99803 af_g: 1.00109 75% :2992	50 810 7 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	
Refresh System cons dH20_Ca1: 5000 dc H20_Quer: 3513 Time-Lag at Std.F1 Tcuv_o: -22 Tcu Tamb_o: -23 Tam Tnin_o: -31 Tmi Tleaf_o: 24 Tle PARtop_g: 503.970 PARtop_g: 100.990 RH 25% : 963 RH Lights_f: 1.0000 Fmburg to Labore Table	Cancel	50 810 7 5 5 7 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7	
Refresh System cons dH20_Cal: 5000 dc H20_Quer: 3513 Time-Lag at Std.F1 Tcuv_o: -22 Tcu Tamb_o: -23 Tam Thin_o: -31 Tmi Tleaf_o: 24 Tle PARkamb_g: 503.970 PARtop_g: 100.990 RH 25% : 963 RH Lights_f: 1.00000 Empty Chamber Volu Reserve1: 1.00000	Cancel ttants DS to2_Cal: 5010 ow: 8.33s v_g : 1.00101 b_g : 1.00197 n_g : 0.99803 af_g: 1.00109 75% :2992 me : 1024m1	50 81) Т с и 27.68 Т l с af 27.48 Т m in 27.69 Р Р м 16316 H 20 abs Р Р м 16312	

Fig. 6 Option2/ System Constants showing the parameters, stored in the Electronics Box of the Gas-Exchange Chamber 3010-GWK1. Top: in GFS-Win; bottom: on the panel-PC

stored in the Gas-Exchange Chamber 3010-GWK1. It needs to be changed, if the upper part of the chamber is altered, so that the volume changes. To access it, chose *Calibration/Measuring Head/Empty* chamber Volume in GFS-Win.

Since the values are stored in the measuring head, the Gas Exchange Chamber 3010-GWK1 can simply be replaced by the Standard

🖏 GFS-Win 3.15c (October 2009)-KETA0151: null.csv	
System Window Option1 Option2 Help	Class
	Liear
O Settings Chart O Values O Report O Program	
full fine CO2abs [ppm] 💌 🗏 H2Oabs [ppm] 💌 fine ful	I 📥 CO2abs
CO2buf (ppm)	→ ppm 66.8
2000 dC02 (ppm)	30000 dC02ZP
1800 H20buf [ppm]	27000 ppm
1600 Pamb [kPa]	24000
1400 [Flow [µmol/s]	21000 dCO2MP ppm
1200	18000 125.67
1000	H20abs
800	12000 ppm 12112
600	9000
400	6000 un2021
2.5 3.5 4.5 [min] 5.5 6.5 7.5	dH20MP
▼ + 4:42 / () Clear Save	▼ 450
Mode Store Auto	C1:94 C2:
MP MP ZPcuv ZPirga	11:50:58
System Jindow Option Option2 ESC EID C02abs 75guo 75guo 75guo 72guo 24.97 C02bvf 6061218243036424854min 999.0 999.0 999.0 999.0 C02bvf 1100000000000000000000000000000000000	

Fig. 7 GFS-Win and the panel-PC with window chart showing the new variables CO2buf and H2Obuf

Measuring Head 3010-S or the Dual-PAM Cuvette 3010-Dual without concern on any settings. Only the valve settings of the Central Unit need to be readjusted, if the measuring head or the flow rate is changed.

The chamber volume is required to calculate the new variables CO2buf and H2Obuf (Fig. 7). These are the CO₂ or H₂O mole fractions the gas exchange chamber would reach, if it was empty. These concentrations are calculated from the flow rate, the chamber volume, and the continuously recorded concentrations in the reference, CO2abs and H2Oabs, with an e-function. If the volume of the sample reduces the chamber volume by a considerable amount (e.g. when measuring fruits), its value needs to be entered correctly in the windows settings before the experiment (Fig. 8). The calculation of the parameters CO2buf and H2Obuf enables the calculation of dCO2MP and dH2OMP more correctly, even before the cuvette is completely flushed and in a new steady state after a change in concentration settings. When the system is in a complete steady state, CO2buf and H2Obuf will become equal to CO2abs and H2Oabs. If the entered volume is wrong, dCO2MP and dH2OMP can still be correct, but the user needs to wait longer for a steady state. Since the calculation of CO2buf and H2Obuf requires the continuously recorded data, it is not possible to recalculate the data with a new volume after the measurement.

The new variables CO2buf and H2Obuf are only shown in the Window/Chart. They are not stored or indicated in the values window, since they are only used internally for the calculation of dCO2MP and dH2OMP. CO2buf and H2Obuf can easily be recalculated from dCO2MP, ca, dH2OMP and wa (see chapter 4).

Note, that with the panel-PC, if *Option /Data-File Management or Program-File Management* is chosen, the measurement is interrupted, so that the calculation of CO2buf and H2Obuf is interrupted, too, even though the system is running. Avoid using these functions during

measurements or wait until the system is in a steady state after using these functions before taking measurements.

	l ×
System Window Option1 Option2 Help	
Info:	Clear
Settings C Chart C Values C Report C Program	
General Object Vol 0001 Cent. Unit Meas.Head Flow.Module C02 Filename Object Vol 0001 Flow Inpeller Z-Offset Gain 367 Start Start 8.00 C02 Itight Mode ML MLAmpl C02 Start Prg.name H20Mode Itight Itight SatInt Sa	ibs n .8 22P n - MP abs n 47 abs n 00 IZP m -
Mode Store Store Auto	2:
	:53
System Jindow Option Option2 ESC 201 General CU MH Filename Ob. 1 Vol. Flow Fan 301060WK1 100 Flow Fan 800 1000 OFF 1400 800 20.00 1000 OFF 801 20.00 1000 OFF 100 Start Prg.name H2O M. T.Mode storing abs cuv General 15.80 Interval Start SetVal SetVal 979.3 10/11 program 20000 25.0 Jino19% NO connand * * * Auto2P ** * * *	

Fig. 8 GFS-Win and panel-PC with window settings showing the new parameter Vol, which is the estimated sample volume, reducing the chamber volume

Also the values CO2sam (CO₂ concentration in the sample side of the analyzer) and H2Osam (H₂O concentration in the sample side of the analyzer) are not shown. Instead the values ca and wa, that are the same as CO2sam and H2Osam, but corrected for dCO2ZP and dH2OZP,

respectively, are shown and stored. The names ca and wa indicate, that they are the concentrations of CO_2 and water <u>a</u>round the sample in contrast to ci, which is the <u>intercellular CO₂-concentration</u>. See also chapter 4 for a mathematical description of these parameters.

Another parameter stored directly in the electronics of the measuring

Fig. 9 Window values in GFS-Win and on the panel-PC, the relative humidity (rh) is measured with an RHsensor within the Gas-Exchange Chamber 3010-GWK1

head with *Option1/ Calibration/ Measuring Head* is the "Time-Lag at Standard Flow (s)" (Fig. 5 and Fig. 6). This parameter is affected by the tube length. It is used to take the time-lag between the air coming through the measuring head and through the reference channel into account. The actual parameter used for the data calculation is called "CO2delay". In GFS-Win, it can be seen in *Option1/Advanced Settings*. CO2delay is calculated from the time-lag, stored in the measuring head, and the chosen flow rate whenever the flow is switched on or changed. If there is no measuring head connected, the CO2delay can be adjusted under advanced settings in GFS-Win.

The Gas Exchange Chamber-GWK1 has a sensor for relative humidity. The indicated value is not calculated as for the Standard Measuring Head 3010-S, but measured within the cuvette (see Fig. 9).

3.4 Starting Gas Exchange Measurement

3.4.1 Checks before Gas Exchange Measurement

Read chapter 6 of the GFS-3000 manual for a short reminder on the checks and calibrations that might be required before a gas exchange measurement can be started.

Check whether the silica gel within the Gas Exchange Chamber 3010-GWK1 needs to be replaced. It prevents condensation at the electronics, which is especially required, when the cooling function is used during the experiment.

3.4.2 Setting-Up and Starting the Gas Exchange Measurement

When the Gas-Exchange Chamber 3010-GWK1 is connected and GFS-Win is started, the volume of the sample (ml) appears in the window settings as additional parameter (Fig. 8). Enter the volume of the sample. If the upper part of the chamber has been changed, make sure that the volume of the empty chamber (*Option/Calibration/*

Measuring Head/Empty Chamber Volume), which is stored in the electronics box of the chamber, is correct.

Decide on the flow; the standard value for the Gas-Exchange Chamber 3010-GWK1 is 1250 µmol/s. With this flow, adjust the valves of the GFS-3000 with a small screw driver. To do that, press *Option1/Calibration/Central Unit/Valve Adjustment* in GFS-Win and follow the given instructions. Usually, the valve adjustment only needs to be performed once after the cuvette or the flow has been changed between experiments.

Fig. 10 Determination of differential zero for H₂O and CO₂ (dCO2ZPi, dH2OZPi) and start of a measurement

After switching the system on, enter the set-point for the cuvette temperature and speed of internal fan, switch on the flow, choose the CO_2 and H_2O concentration, enter the reference magnitude of the sample (area or weight), and finally enter a filename for the data storage.

For accurate gas exchange measurements, it is essential to measure the zero for the differential CO_2 and H_2O concentration before the CO_2 assimilation or H_2O evaporation can be measured. This can be done using the ZP Mode or with an empty cuvette. Fig. 10 shows an example, where the Zero Point has been determined in ZP-Mode. Further information on MP and ZP Mode can be found in the GFS-3000 manual. (chapter 4.3). It is advisable to repeat the complete measurement procedure with an empty chamber to get an idea of the influence of diffusion processes on the measurement. The differential zero depends on the absolute concentration of CO2 or H2O and may drift with time.

Opening the chamber will disturb the CO_2 and H_2O concentrations in the chamber. It will take a while until the gas exchange measurement is in a steady state.

Each time after inserting a sample, check whether the chamber is closed properly (check the mechanical flow indicators). If it is not possible to seal the chamber properly (e.g. around the petiole), Terostat IX (Fig. 11) might be helpful.

Do not compress the gaskets, when storing the chamber.

Fig. 11 Label of Terostat IX, a sealing material commonly used in gas exchange measurements or in car repairs

4 Calculations

4.1 Parameters for Calculations

The following table (Table 1) lists the parameters integrated in the formulas and directly assessed by the GFS-3000 when the Gas Exchange Chamber 3010-GWK1 is connected.

Given parameter or	Description	Unit
measured value		
Empty Chamber Volume	Volume of the empty chamber	ml
Vol	Sample Volume	ml
CO2delay	Time difference between the gas	S
	arriving in the sample or reference side	
	of the gas analyzer	
Area/Weight	Reference value of the sample used for	cm ² /mg
	calculations	
CO2abs	CO ₂ mole fraction in reference cell of	ppm*
	analyzer, equal to CO ₂ concentration at	
	inlet of cuvette.	
CO2sam	CO ₂ mole fraction in sample cell of	ppm
	analyzer. Not corrected for dCO2ZP	
dCO2ZP	= CO2sam - CO2abs	ppm
	(in Mode ZP or in Mode MP with an	
	empty chamber)	
H2Oabs	H ₂ O mole fraction in reference cell of	ppm
	analyzer, equal to H ₂ O concentration at	
	inlet of cuvette.	
H2Osam	H ₂ O mole fraction in sample cell of	ppm
	analyzer. Not corrected for dCO2ZP	
dH2OZP	= H2Osample - H2Oabs	ppm
	(in Mode ZP or in Mode MP with an	
	empty chamber)	
Pamb	Ambient barometric pressure	kPa
Flow	Gas flow entering cuvette	µmol/s
Tcuv	Air temperature within cuvette	°C
Tleaf	Leaf temperature	°C
rH	Relative humidity within cuvette	rh %

Table 1: Parameters used for calculation

*ppm= µmol mol⁻¹

4.2 Calculation of CO₂ Mole Fraction in the Chamber – ca

The actual CO_2 concentration within the chamber and <u>a</u>round the sample (ca) is measured at the outlet of the chamber (c_o). It is the value measured on the sample side of the analyzer, corrected for dCO2ZP. dCO2ZP corrects for the inherent difference between the sample side and the reference side of the analyzer.

(1) $ca = c_a = CO2sam - dCO2ZP$

4.3 Modulation of CO₂ Mole Fraction in the Empty Chamber – CO2buf

Since the Gas Exchange Chamber 3010-GWK1 has a considerable volume, any step change in CO_2 concentration will lead to a slow change in the CO_2 concentration within the chamber, because the inlet concentration will mix with the actual concentration of the chamber. Ideally this mixing will follow an e-function, which in an empty chamber slowly reaches the inlet-concentration CO2abs.

(2)
$$\operatorname{CO2buf}_{(t)} = \operatorname{CO2abs}_{(t)} + \left(\operatorname{CO2buf}_{(t-\Delta t)} - \operatorname{CO2abs}_{(t)}\right) \cdot e^{-\frac{\Delta t}{\tau}}$$

whereby: $\tau = \frac{EmptyChamberVolume(ml) - SampleVolume(ml)}{0.02242(ml / \mu mol) \cdot Flow(\mu mol / s)}$

 Δt : time between measurements (1s)

CO2buf is the CO_2 mole fraction the chamber would have, if there was no uptake or release of CO_2 by the plant. The name "buf" relates to the word buffer. Previous instruments (CMS400) would have a buffervessel in the reference with the same volume as the gas exchange chamber. CO2buf simulates this vessel.

If for the Empty Chamber Volume, 0 ml is entered, CO2buf = CO2abs If the flow is off, CO2buf is set to CO2abs. If the cuvette is flushed long enough, CO2buf will become equal to CO2abs.

4.4 Calculation of the Differential CO₂ Mole Fraction in Measure Mode MP – dCO2MP

With the Gas Exchange Chamber 3010-GWK1, dCO2MP is calculated from the CO_2 mole fraction at the outlet of the chamber (ca) and the CO_2 mole fraction CO2buf, which is calculated from the reference.

(3)
$$dCO2MP - dCO2ZP = ca_{(t)} - CO2buf_{(t-CO2delay)}$$

Whereby CO2delay is the time lag caused by the difference in tube length between the reference side and measuring side of the pneumatics.

With GFS-Win Version 3.15 and higher the CO2delay is stored in the electronics of Measuring Head, because it is dependent on the tube length of the Measuring Head. The stored standard value is always the value for the flow rate 750 μ mol s⁻¹. It will be recalculated for the chosen flow rate. Checking and adjusting the actual CO2delay is described in chapter 6.1.

If no Measuring Head is connected the CO2delay can be set with *Option1/AdvancedSettings*.

4.5 Calculation of H₂O Mole Fraction in the Chamber – wa

The H2O mole fraction in the Chamber (wa) is calculated in the same way as the CO2 mole fraction (ca). wa is the actual H_2O concentration within the chamber and <u>a</u>round the sample (wa) is measured at the outlet of the chamber (w_o).

(4) $wa = w_a = H2Osam - dH2OZP$

4.6 Calculation of H2Obuf

H2Obuf is modelled from H2Oabs in the same way as explained for the CO2buf (chapter 3.3 and 4.3).

(5)
$$\text{H2Obuf}_{(t)} = \text{H2Oabs}_{(t)} + (\text{H2Obuf}_{(t-\Delta t)} - \text{H2Oabs}_{(t)}) \cdot e^{-\frac{\Delta t}{\tau}}$$

Whereby τ and Δt are the same values as given in chapter 4.3.

H2Obuf is the H_2O mole fraction that the chamber would have, if there was no uptake or release of H_2O within the chamber.

4.7 Calculation of the Differential $H2O_2$ Mole Fraction in Measure Mode MP – dH2OMP

With the Gas Exchange Chamber 3010-GWK1, dH2OMP is calculated from the H2O mole fraction at the exit of the chamber and H2Obuf, which is modelled from the reference.

(6)
$$dH2OMP - dH2OZP = wa_{(t)} - H2Obuf_{(t-CO2delay)}$$

Whereby CO2delay is the same value as given above in chapter 4.4.

4.8 Calculation of Transpiration Rate – E,

According to Caemmerer and Farquhar (1981) the transpiration rate is calculated as follows:

(7)
$$E = \frac{u_e^*(w_o - w_e)}{LA^*(1 - w_o)}$$

Whereby:

E = transpiration rate [mmol m⁻² s⁻¹],

 $u_e = molar$ flow rate at the inlet of the cuvette [µmol s⁻¹],

 $w_o = H_2O$ mole fraction at the outlet of the cuvette [ppm],

 $w_e = H_2O$ mole fraction at the inlet of the cuvette [ppm], LA = leaf area [m²].

The terms in equation (7) relate to the values provided by the GFS-3000 as follows:

(8)
$$u_e = Flow$$

(9)
$$w_o - w_e = dH 2OMP - dH 2OZP$$

(10) $w_o = wa$

$$(11) \qquad LA = Area$$

Using the values provided by the GFS-3000 and equations (7) -

(11) the transpiration rate E can be calculated as follows:

(12)
$$E = \frac{Flow * (dH 2OMP - dH 2OZP)}{Area * (1 - wa)}$$

4.9 Relative Humidity (rh %)

With the Gas Exchange Chamber 3010-GWK1, the relative humidity is not calculated as with the Standard Measuring Head 3010-S, but directly measured within the Chamber.

4.10 Calculation of Vapour Pressure Deficit - VPD

According to Caemmerer and Farquhar (1981) the ALVPD (or VPD) is calculated as follows:

(13)
$$VPD = \frac{(w_i - w_a)}{1 - \frac{(w_i + w_a)}{2}}$$

Whereby:

VPD = (Air-to-Leaf-) Vapor-Pressure-Deficit [Pa/kPa],

 $w_i = H_2O$ mole fraction within the leaf [ppm],

 $w_a = H_2O$ mole fraction in the cuvette [ppm].

w_i is calculated from the temperature of the leaf:

(14)
$$w_i = \frac{SVP(Tleaf)}{Pcuv}$$

Whereby:

SVP (Tleaf) = saturation vapour pressure at Tleaf calculated according to Goff-Gratch [kPa] (*see* manual of the GFS-3000 chapter 19),

Pcuv = total pressure in the cuvette [kPa].

In the GFS-3000 the ambient pressure Pamb is measured. Only a small overpressure exists in the cuvette, therefore it is assumed:

(15) Pcuv = Pamb

For the Gas Exchange Chamber 3010-GWK1, the H_2O mole fraction in the cuvette w_a corresponds to H_2O mole fraction at the outlet of the cuvette w_o :

(16) $w_a = wa$

Using the values provided by the GFS-3000 and equations (13) - (16) the VPD can be calculated as follows:

(17)
$$VPD = \frac{(\frac{SVP(Tleaf)}{Pamb} - wa)}{(\frac{SVP(Tleaf)}{Pamb} + wa)} \\ 1 - \frac{Pamb}{2}$$

4.11 Calculation of Water Vapor Conductance - GH2O

According to Caemmerer and Farquhar (1981) the total water vapor conductance GH2O is calculated as follows:

(18)
$$GH2O = \frac{E}{VPD}$$

Whereby

GH2O = total water vapor conductance [mmol $m^{-2} s^{-1}$],

E = transpiration rate [mmol m⁻² s⁻¹],

VPD = (Air-to-Leaf-)Vapor-Pressure-Deficit [Pa/kPa].

GH2O can be calculated using the results of equations (12) and (17).

4.12 Calculation of Assimilation Rate - A

According to Caemmerer and Farquhar (1981) the assimilation rate A is calculated as follows:

(19)
$$A = \frac{u_e * (c_e - c_o)}{LA} - E * c_o$$

where

A = assimilation rate [μ mol m⁻² s⁻¹], u_e = molar flow rate at the inlet of the cuvette [μ mol s⁻¹], c_o = CO₂ mole fraction at the outlet of the cuvette [ppm], c_e = CO₂ mole fraction at the inlet of the cuvette [ppm]. LA = leaf area [m²], E = transpiration rate [mmol m⁻² s⁻¹],

The terms in equation (19) relate to the values provided by the GFS-3000 as follows:

(20)
$$u_e = Flow$$

(21)
$$c_e - c_o = dCO2ZP - dCO2MP$$

- (22) $c_o = ca$
- $(23) \qquad LA = Area$

Using the values provided by the GFS-3000, equations (19) - (23) and the result of equation (12), the assimilation rate A can be calculated as follows:

(24)
$$A = \frac{Flow * (dCO2ZP - dCO2MP)}{Area} - E * ca$$

4.13 Calculation of Intercellular CO₂ Mole Fraction

According to Caemmerer and Farquhar (1981) the intercellular CO_2 mole fraction ci is calculated as follows - ci:

(25)
$$ci = \frac{(GCO2 - \frac{E}{2})*ca - A}{GCO2 + \frac{E}{2}}$$

Whereby

ci = intercellular CO₂ mole fraction [ppm], GCO2 = conductance for CO₂ [mmol m⁻² s⁻¹], E = transpiration rate [mmol m⁻² s⁻¹], ca = CO₂ mole fraction in the cuvette [ppm], A = assimilation rate [μ mol m⁻² s⁻¹].

The conductance for CO_2 depends on the conductance for H_2O as follows (simplified equation):

$$(26) \qquad GCO2 = \frac{GH2O}{1.56}$$

Using the values provided by the GFS-3000, the intercellular CO_2 mole fraction ci can be calculated as follows:

(27)
$$ci = \frac{\left(\frac{GH2O}{1.56} - \frac{E}{2}\right)^* ca - A}{\frac{GH2O}{1.56} + \frac{E}{2}}$$

Note that the value given for the intercellular CO_2 concentration (ci) generally has no meaning with closed stomates, since a division by zero or close to zero takes place.

5 Data Handling

5.1 Reading Data into Excel 2003 and higher

Customize Regional Options	<u>?</u> ×
Numbers Currency Time Date	1
Sample Positive: 123'456'789.00	Negative: 123'456'789.00
Decimal symbol:	
No. of digits after decimal:	2
Digit grouping symbol:	' •
Digit grouping:	123'456'789
Negative sign symbol:	· •
Negative number format:	-1.1
Display leading zeros:	0.7
List separator:	
Measurement system:	Metric
Standard digits:	0123456789
Digit substitution:	None
0	K Cancel Apply

Fig. 12 Customize Reg. Opt.

Language Options/ Customize.

The data are stored in the character-separated-value format (.csv-format). The character separating the values is a semi-colon. If the symbol used in the characterseparated-value format matches the symbol given in Customize Regional Options, then the .csv-file will open up in Excel without problems and data will be automatically separated into columns. If this is not the case, the list separator can be changed with Start/ Settings/ Control Panel/ Regional and

Furthermore, in Excel it might be required to choose the appropriate decimal symbol. This can be done within Excel with: *Extra/ Option/ International/ Decimal Symbol*: "."

If the general settings for the list separator shall not be changed, and the data all appear in one column, select the first column with the data and then choose: *Data/ Text into Columns/ Delimited/ Other ";" / Next/ Advanced/ Decimal Symbol "."/ Next/ Finish.*

5.2 Recalculation of Data

is explained aboveThe gas exchange data can be recalculated with a new leaf area or a new weight as reference parameter. The button **New leaf area** in the report window (Fig. 13) allows to enter a new leaf area for each object number and to automatically recalculate the data.

Settin Recald	igs C . file	Chart New le area	af a	Values New weig	pht 🔍	Report	<u>e</u> .	Program	m	Copy Report	Fo	ont +/-	CO2a
dH20MP	Flow µmol/s	Pamb kPa	02 ž	Batt. 02 V	Teuv 'C	Tleaf 'C	Ttop "C	ih Z	E mmol m-2	VPD Pa/kPa	6H20 mmol m-2	A ▲ µmol m-2	699.0
97	399.8	97.3	1.50	8.458	20.01	21.04	20.00	78.85	0.14	8.76	15.7	4.96	
101	399.8	97.3	1.54	8.459	20.01	21.04	20.00	70.90	0.15	8,76	17.1	5.14	CI
113	399.9	97.3	1.74	8.457	20.00	21.02	20.01	78.99	0.19	8.71	21.6	5.34	ppm
114	399.9	97.3	1.72	8.459	20.01	21.02	20.00	70.90	0.19	8.72	22.0	5.58	365.
115	339.9	97.3	1.71	0.457	20.01	21.02	19.99	70.97	0.19	0.71	22.1	6.26	
122	399.8	97.3	1.74	8.457	20.00	21.02	19.99	71.00	0.21	8.71	24.7	6.30	A
137	399.9	97.3	1.69	8.457	20.02	21.02	20.02	70.97	0.26	8.70	30.2	7.24	
146	399.8	97.3	1.66	8.458	20.01	21.01	19.99	71.05	0.29	8.67	33.7	7.84	μποι
164	399.9	97.3	1.68	8.458	20.01	21.02	20.00	71.11	0.35	8.68	39.8	8.49	10.7
171	399.8	97.3	1.62	8.457	19.99	21.00	20.00	71.26	0.37	8.63	42.9	8.93	
179	400.1	97.3	1.63	8.458	20.01	21.02	19.99	71.19	0.39	8.65	45.4	9.47	E
178	399.8	97.3	1.59	8.457	20.00	20.98	19.98	71.23	0.39	8.60	45.3	9.80	mmo
185	399.9	97.3	1.57	8.457	19.99	20.98	19.98	71.38	0.41	8.57	48.2	10.00	0.45
103	400.0	97.3	1.57	0.457	19.90	20.95	19.90	71.37	0.41	0.54	47.5	10.09	0.40
190	400.0	97.3	1.46	8.457	20.00	20.98	19.99	71.30	0.43	8.58	49.8	10.30	0.110
189	399.8	97.3	1.44	8.457	19.99	20.97	19.99	71.32	0.42	8.56	49.5	10.38	GH2
186	399.8	97.3	1.43	8.457	19.98	20.95	19.98	71.37	0.42	8.53	48.7	10.54	mmo
190	399.9	97.3	1.42	8.456	19.99	20.96	19.98	71.31	0.43	8.55	50.2	10.83	52.0
200	399.0	97.3	1.40	0.454	20.01	20.96	20.00	71.25	0.46	0.54	53.7	10.71	
199	400.0	97.3	1.34	8.457	20.01	21.00	19.99	71.24	0.46	8.60	53.2	10.71	Tlea
201	400.1	97.3	1.33	8.455	20.00	20.97	20.00	71.25	0.46	8.58	53.9	10.83	
204	399.8	97.2	1.27	8.456	20.00	20.97	20.00	71.28	0.47	8.58	54.9	10.95	
4												5 P	20.9

Fig. 13 GFS-Win: Window Report

As stated above, for the accuracy of the gas exchange data, it is important to determine an exact zero point for the differential CO_2 and H_2O concentration (dCO2ZP and dH2OZP). To get an idea on the zero drift during a measurement, the complete protocol may be repeated with an empty chamber. To recalculate the data with a more exactly determined ZP, the values for dCO2ZP and dH2OZP can be changed within Excel and then recalculated with GFS-Win. To do that the data need to be saved with Excel in the csv-format (character separated value format; use a comma or semicolon as list separator). For the recalculation, press the button **Recalc file** in the Report window.

It is not possible to recalculate the data with another sample volume (see chapter 3.3 and 4.3).

6 Maintenance and Adjustment

6.1 Adjusting CO2 Delay

For the determination of the CO2delay start the procedure *Option2/Calibration/Measuring Head/CO2 Delay*. Write down the actual value and enter "D" to start the determination procedure. A short pulse of CO₂ will be given. In the chart, measure the time lag between the increase in CO2buf and ca. To do that, the curser can be changed from an arrow to a cross by pressing the button that is labelled with a cross or arrow (see circle in Fig. 14). Move the curser over the increase of each curve (see magnified insert in Fig. 14), and calculate the difference of both time-values indicated in the lower left corner of the window chart (see arrow in Fig. 14). After pressing "Next" correct the

Fig. 14 CO2delay determination

actual value for the CO2delay with the measured time-lag. Repeat the procedure by pressing "Back", and adjust the value for the CO2-Delay until the curves both increase in the same moment.

GFS-Win 3.15c (October 2009)-KETA0151: null.csv	
Info: CO2-Delay determination in progress. Follow instructions in Extra-Window	Clear
C Sattings G Chart C Values G Report C Brogram	
Settings Color Color Full fine Color Full fine	CO2abs ppm 20.5 0 dCO2ZP 0 ppm
240 244 210 21	0 -0.10 0 dC02MP
180 18 150 15 120 12	0 58.89 0 H2Oabs 0 ppm 12403
	0 dH20ZP ppm 0 23
▲ 40 41 42 [min] 43 44 45 ▲ ↓ 45:07 / ← Clear Save ▼	dH2OMP ppm 92
Mode Store Store Auto MP MP ZPcuv ZPirga	C1:93 C2: 20:28:38

Fig. 15 CO2delay determination with well adjusted value for CO2delay

6.2 Adjusting Empty Chamber Volume

Fig.16 demonstrates the effect of calculating the value CO2buf. It shows the time course of the CO_2 mole fraction within an empty Gas-Exchange Chamber 3010-GWK1 (ca) after a step-change in the inlet CO_2 concentration (CO2abs). It is easiest to do a good step-change by first regulating to a high CO_2 concentration and then, when the CO_2 concentration is reached, not only in the reference (CO2abs) but also in the chamber (ca), switching the CO_2 regulation off. ca now drops with some delay and then adjusts slowly to the inlet CO_2 concentration (CO2abs) as it is mixed in the chamber.

Fig.16 Step change in CO_2 concentration to demonstrate CO2buf. It shall be modelled so that it matches ca as close as possible with an empty chamber. The difference in the start of the drop (1) is corrected with the CO2delay (see previous chapter). The difference in the shape (2) is corrected with the setting for the Empty Chamber Volume

CO2buf is calculated from the reference (CO2abs) as described in chapter 4.3. Within the electronics of the Measuring Head the value for the volume of the empty chamber is stored (*Option1/ Calibration/ Measuring Head/ Empty Chamber Volume*, Fig. 5), so that CO2buf matches ca as close as possible, when there is a change in CO2abs (Fig.16).

6.3 Function Test of Tleaf

The intactness of the thermocouple (measuring Tleaf) should be tested regularly. To test the function of the thermocouple, switch the fan off, place a black piece of paper on Tleaf, and shine some strong light (500-2000 μ mol m⁻² s⁻¹) on it. Tleaf should change its temperature with illumination by several degrees °C. If Tleaf stays constant the thermocouple is broken and needs to be replaced.

Exchanging the Thermocouple for Tleaf

Fig. 17

6.4

То exchange the thermocouple, remove the hood covering Tcuv and disconnect the two green, the white, and the two vellow plugs. Connect the plugs of the new thermocouple. Connect the short green wire to the green socket, that is closest to the yellow plugs of Tcuv. Make sure that Tcuy does not

touch the aluminum, but measures the air temperature. After the thermocouple has been exchanged, adjust Tleaf Offset (see next chapter).

6.5 Adjusting Tleaf-Offset

The thermocouple measures the leaf temperature (Tleaf). It consists of two tips, which physically measure the temperature difference between the reference of Tleaf, which is in close contact to Tcuv, and the tip of Tleaf, which should touch the sample. To adjust the zero-offset, there should be no difference between the temperature of the reference (Tcuv) and Tleaf. To achieve that, bring the Tleaf sensor close to Tcuv and close the Gas-Exchange Chamber 3010-GWK1. Press Option1/Calibration/Measuring Head/Tleaf Offset. Wait until Tcuv and Tleaf are in a steady state and then press ok to store the new offset in the Measuring Head.

6.6 Keep Electronics Dry

The chamber is not rain- or spray-water proof.

The electronics of the chamber need to be protected from condensation which might occur with temperature changes. To keep them dry, flush the system with dry air (e.g. compressed air) during the experiment, or exchange the silica gel within the tubes before experiments. This is especially required, when the cooling function of the chamber will be used.

Fig. 18 Silica gel within Gas-Exchange Chamber 3010-GWK1

7 Technical Data

7.1 Gas-Exchange Chamber 3010-GWK1

- **Design:** Chamber consisting of an aluminum cooling block with two pneumatic connectors and transversal fan, flat polymer lid or user-designed cuvette; micro-processor controlled electronics with connectors for temperature sensors, humidity sensor, PAR-sensors, GFS-3000 or 3010-I/GWK connection, power-input; cooled with Peltier-cooling units and ventilator
- **Measurement of chamber and ambient temperatures:** Pt 100 type A, range -10 to 50 °C, accuracy ±0.1 °C
- **Leaf temp. measurement:** Thermocouple, range: -10 to 50 °C, accuracy ± 0.2 °C
- **Temperature control:** Three modes of temperature control: Constant cuvette temperature, constant leaf temperature, follow ambient temperature with an offset

Temperature control range:

-10°C to 50°C, depending on ambient temperature and radiative heat intake. With 41 volume, dark: 10 K below ambient temperature and 25 K above ambient temperature. With flat lid, dark: 20 K below ambient temperature and 35 K above ambient temperature

- **Relative humidity sensor:** Range: 0 to 100% r.h., accuracy: ±1.5% (5 to 95% r.h.), T₉₀ response time (11 to 75% r.h.): <10 s
- **External miniature quantum sensor:** Mini Quantum Sensor MQS-B/GWK1 outside of chamber. Selective PAR measurement, range 0 to 2500 μ mol m⁻² s⁻¹, accuracy ±5%, cosine corrected (measuring photosynthetic photon flux density PPFD)
- **Internal light sensor:** Selective PAR measurement, range 0 to 2500 μ mol m-2 s-1 PAR, accuracy $\pm 10\%$, two sensors, one in the upper and one in the lower part of the cuvette

- Cuvette ventilation system: Transversal fan
- Maximum sample area: 14 cm x 10 cm
- Pneumatic connectors: Hose fittings for 10/8 mm (OD/ID) tubing
- **Inner volume of the cooling unit alone:** 840 ml (up to edge of aluminum frame)

Power supply: AC Power Supply 3020-N for laboratory operation

Power consumption: Max. 45 W

Operating temperature: -5 to 45 °C

Dimension of cooling unit: 26 cm x 25 cm x 19.5 cm (L x W x H)

Weight: 6.9 kg including cables and tubes

Cuvette:

Standard: Flat lid (inside: 16 cm x 14.5 cm, outside: 18.5 cm x 17 cm, volume: 320 ml)

Other design: Available on customer request

7.2 AC Power Supply 3020-N

Design: DC power supply unit for laboratory use Output voltage: 16 V DC Output power: 135 W Mains power supply: 100 to 240 V AC, 50/60 Hz Operating temperature: 0 to 60 °C Dimensions: 20 cm x 8 cm x 5 cm (L x W x H)

Weight: 1 kg

7.3 Interface 3010-I/GWK (optional)

Design: USB-RS485 Converter with over voltage protection and connecting cables. For operation of the Gas Exchange Chamber 3010-GWK1 with a PC.

Technical data may change without prior notice

8 Warranty

All products supplied by the Heinz Walz GmbH, Germany, are warranted by Heinz Walz GmbH, Germany to be free from defects in material and workmanship for one (1) year from the shipping date (date on invoice).

The warranty is subject to the following conditions:

- 1. This warranty applies if the defects are called to the attention of Heinz Walz GmbH, Germany, in writing within one year (1) of the shipping date of the product.
- 2. This warranty shall not apply to any defects or damage directly or indirectly caused by or resulting from the use of unauthorized replacement parts and/or service performed by unauthorized personnel.
- 3. This warranty shall not apply to any product supplied by the Heinz Walz GmbH, Germany which has been subjected to misuse, abuse, abnormal use, negligence, alteration or accident.
- 4. This warranty does not apply to damage caused from improper packaging during shipment or any natural acts of God.
- 5. This warranty does not apply to underwater cables, connectors, batteries, fiberoptic cables, lamps, gas filters, thermocouples, fuses or calibrations.

To obtain warranty service, please follow the instructions below:

- 1. The Warranty Registration form must be completed and returned to Heinz Walz GmbH, Germany.
- 2. The product must be returned to Heinz Walz GmbH, Germany, within 30 days after Heinz Walz GmbH, Germany has received written notice of the defect. Postage, insurance, custom duties,

and/or shipping costs incurred in returning equipment for warranty service are at customer expense.

- 3. All products being returned for warranty service must be carefully packed and sent freight prepaid.
- 4. Heinz Walz GmbH, Germany is not responsible or liable, for missing components or damage to the unit caused by handling during shipping. All claims or damage should be directed to the shipping carrier.